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Background: People living in clustered communities with health comorbidities are highly vulnerable to
COVID-19 infection. Rapid vaccination of vulnerable populations is critical to reducing fatalities and mit-
igating strain on healthcare systems. We present a case study on COVID-19 vaccine distribution via
mobile vans to residents/staff of 47,907 long-term care facilities (LTCFs) across the United States that
relied on algorithms to optimize vaccine distribution.
Methods: We developed a modeling framework for vaccine distribution to high-risk populations in a
supply-constrained environment. Our framework decomposed this challenge as two separate problems:
an assignment problem where we optimally mapped each LTCF to select CVS stores responsible for dis-
tributing vaccines; and a scheduling problem where we developed an algorithm to assign available
resources efficiently.
Results: We assigned 1,214 retail stores as depots for vaccine distribution to LTCFs throughout the United
States. Forty-one percent of matched depot-LTCF pairs were within 5 miles of a depot, 74% were within
20 miles, and only 8% mapped to depots farther than 50 miles away. Our two-step approach ensured that
the first LTCF vaccination dose was distributed within 9 days after the program start date in 76% of states,
and greater than 90% of doses were administered in the minimum amount of time.
Conclusions: We demonstrate that algorithmic approaches are instrumental in maximizing vaccine distri-
bution efficiency. Our learning and framework may be of use to other organizations, including commu-
nities where mobile clinics can be established to efficiently distribute vaccines and other healthcare
resources in a variety of scenarios.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The novel coronavirus disease-2019 (COVID-19) pandemic
caused by severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) erupted in early December of 2019 in Hubei province
of the People’s Republic of China and has since taken the lives of
more than 5.2 million people worldwide [1]. The United States
(US) accounts for around 20% of those deaths. Of the total deaths
in the US, approximately 34% are due to fatalities in long-term care
facilities (LTCFs), although fewer than 1% of the country’s popula-
tion lives in this form of housing [2]. This discrepancy highlights
the disproportionate impact of the pandemic on individuals who
live in LTCFs, as well as the extreme vulnerability of high-risk indi-
viduals living in clustered communities where social distancing is
difficult. Vulnerability to COVID-19 is further enhanced by the fact
that long-term care (LTC) residents are primarily older adults, with
a majority aged 65 and over, whose capacity for self-care may be
limited because of chronic illness, injury, or physical or cognitive
impairment [3]. In recognition of the significant risk factors affect-
ing this community, the Centers for Disease Control and Prevention
(CDC) Advisory Committee on Immunization Practices identified
individuals at LTCFs, including residents and staff, as a priority
group for mass vaccination with COVID-19 vaccines [4].

Mass vaccination has been identified as the chief strategy to
contain the COVID-19 pandemic. The scope of the vaccination
effort during the COVID-19 pandemic is unparalleled in modern
times. Previous vaccination campaigns, such as for influenza, have
typically been conducted over several months and have involved a
vaccine that requires only a single dose and can be stored at ordi-
nary refrigeration temperatures. Furthermore, the urgency associ-
ated with the need for rapid vaccination has not been experienced
since the 1950 s, when polio ran rampant through the US.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.vaccine.2021.12.049&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.vaccine.2021.12.049
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Samta.Shukla@CVSHealth.com
https://doi.org/10.1016/j.vaccine.2021.12.049
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine


S. Shukla, F. Fressin, M. Un et al. Vaccine 40 (2022) 734–741
CVS Health has expansive coverage across the US, including
approximately 10,000 brick-and-mortar stores across all 50 states,
the District of Columbia, and Puerto Rico; 86% of the US population
is located within 10 miles of a CVS location. Because of this unique
national reach, CVS Health was selected by Operation Warp Speed
as a Federal Pharmacy Partner for vaccination of LTCFs [5] and
tasked with the vaccination of patients and healthcare workers/
staff in 47,907 LTCFs in the US. The vaccines used in this initiative
received emergency use authorization in December 2020 (Pfizer on
December 21; Moderna on December 28) and LTCF vaccinations
were initiated the week of December 21, 2020 [6]. The federal
Pharmacy Partnership program ended on April 23, 2021 [6].

In this work, we present a case study on the design, implemen-
tation, and deployment of our solution for (a) assigning the optimal
CVS locations to LTCFs by minimizing distance between them; and
(b) developing a schedule for vaccine administration-distribution
to maximize the number of LTCFs covered in the minimum number
of days. The efforts of CVS Health and the other Federal Pharmacy
Partners in the LTCF vaccination program were instrumental in
effectuating a rapid and dramatic reduction in hospitalizations
and deaths due to COVID-19 [7,8]. Our learnings and framework
can potentially be leveraged by other organizations, healthcare
clinics, and countries to address barriers to vaccination and speed
up delivery of care.
2. Methods

2.1. Problem formulation

Our objective was to match CVS retail locations that had phar-
macies capable of providing the COVID-19 vaccine (referred to
hereafter as ‘‘CVS depots”) with LTCFs while taking into account
multiple challenges (such as distance, residential population,
throughput constraints, CDC requirements, as described below),
and to develop a schedule to minimize the time for residents/staff
in an LTCF to receive both the first and second shots from the
mapped location. We selected a subset of the CVS depots to form
logistical distribution hubs to reach all LTCFs in our assigned
regions, including skilled nursing facilities (SNF) and assisted living
facilities (ALF). Depot selection was optimized by a spatio-
geographical model to ensure a uniform reach of distribution, tak-
ing into account features such as being open for 24 h/7 days per
week and access to cold-chain compliant freezers embedded with
real-time temperature monitoring because of the extreme temper-
ature sensitivity of the vaccines [9].

Our algorithms for optimizing vaccination at LTCFs solved the
LTC vaccine distribution problem in two steps, which are detailed
in subsequent sections:

1. Assignment. We proposed an optimal solution to the depot-
LTCF assignment problem by modeling our problem as a
minimum-cost flow problem [10]. This had two advantages: first,
it was an established and known problem in network flows,
with computationally efficient solvers; second, it was general
enough to allow modeling the constraints encountered in our
settings.

2. Scheduling. Given the optimal assignments achieved in Step 1,
we devised an algorithm to minimize the number of days
needed to vaccinate LTCFs in every state and to compute sched-
ules for the clinics to orchestrate the two doses at the recom-
mended dosing interval. The algorithm further optimized
scheduling by strategically clustering several small LTCFs
together and pairing themwith a large LTCF to determine which
group of LTCFs could be vaccinated on the same day, given
capacity, distance, and supply constraints.
735
2.2. Data source/availability and statistical programs

Our dataset was derived from the following inputs:

� Details on partner LTCFs by state.
� Details on CVS depot locations by state.
� Distances between depot-LTCF pairs by state, and distance
threshold (of 75 miles) by the CDC.

� Capacity constraints provided by the vaccine provider, such as
number of immunizers per team and number of people who
could be vaccinated per immunizer.

� Jurisdiction-vaccine provider partnerships (Moderna or Pfizer
as the vaccine manufacturer).

The data source on details of LTCF locations and occupants by
state, provided by the CDC, is considered protected under the
Health Insurance Portability and Accountability Act (HIPAA) and
thus cannot be published here. The data source on locations of
CVS depots is publicly available [11]; general locations of selected
depots are shown in Supplementary Fig. 1.

We implemented the algorithms in Python, used network anal-
ysis package (networkX version 2.5), and deployed it on Azure
Databricks cluster. Further, to improve usability for field managers
working on operationalizing the effort involved, we also developed
a User Interface tool (written in PySpark and deployed in Datab-
ricks cluster) for sending updated daily schedules in real-time for
the duration of the program. The tool built on the results of the
algorithms, incorporated last-minute changes/cancellations, and
sent the resulting schedule to field managers working in CVS retail
depots.

2.3. Staffing and mapping constraints

Table 1 shows the throughput based on staffing strategy per
hour by LTCF type (SNF or ALF). These staffing numbers were cur-
rent as of Dec 16, 2020. The throughput numbers were assumed to
be the same for both types of mRNA vaccine (Pfizer and Moderna).
Logistically, we assumed that immunization occurred for a maxi-
mum of 6 h per day in any LTCF, with the remaining 2–3 h assigned
to travel and administrative tasks. We calculated throughput for
between 1 and 3 immunizers (and a registration/queueing staff if
needed), which can be scaled up to K immunizers based on need.
The state-vaccine provider partnerships are shown in Supplemen-
tary Fig. 2.

For LTCF vaccination distribution, we were required by the CDC
to map every LTCF clinic to exactly one depot within 75 miles with
a constraint that the depot had to be located in the same state as
the LTCF. Our framework can be easily generalized to solve for a
national-level distribution strategy should state constraints no
longer apply.

2.4. Modeling for the assignment problem (assigning LTCFs to depots)

We modeled the assignment problem represented in Fig. 1 as a
bipartite matching problem in graph G and then transformed it
into a network flow graph G’. To capture the effort to distribute
vaccines to an LTCF, we calculated the number of days it would
take for immunizers to complete vaccinating a specific clinic (de-
noted as ltc_days(m) for clinic m) based on the number of initial
doses needed (represented as doses(m) for clinic m) and the num-
ber of immunizers needed to administer vaccinations at clinic m
(represented as num_immu(m) for administering doses(m) vaccines
at clinic m). We obtained num_immu(m) by referring to the data
available on hourly vaccine administering capacity provided by Pfi-
zer and Moderna (Table 1). To compute ltc_days(m) from



Fig. 1. Original matching graph, G (left), and transformed flow graph, G’ (right). For the sake of illustration, three depots (a, b, c) and four LTCFs are shown. For each depot
node, one auxiliary node and a pair of nodes indicating SNF and ALF counterparts are added. All edges have weights and/or capacities, and nodes have demand or supply as
indicated here. ALF = assisted-living facility; LTC = long-term care facility; SNF = skilled nursing facility.

Table 1
Vaccine administering capacity and throughput.

Registration/ queuing staff Immunizers Immunizations per hour Immunizations per 6 h

SNF ALF In-store SNF ALF In-store

0 1 6 7 5 36 42 30
1 1 8 10 6 48 60 36
1 2 16 20 12 96 120 72
1 3 24 30 18 144 180 108

ALF = assisted living facility; SNF = skilled nursing facility.
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num_immu(m), given that the maximum number of immunizers
we can send to an LTCF is K immunizers per day, we used the fol-
lowing equation:
ltc days mð Þ ¼
num immuðmÞ

K

� �
if num immuðmÞ mod K ¼ 0

num immuðmÞ
K þ 1

� �
if num immuðmÞ mod K ! ¼ 0

8><
>:

In our case, the maximum number of immunizers that could be
sent to any LTCF was K = 6; so for num_immu(m) between 0 and 6
immunizers, ltc_days(m) would compute to 1 day, between 6 and
12 immunizers, it would compute to 2 days, and so on. Finally,
num_days represented the minimum number of days needed for
a state to find a feasible solution for the assignment problem such
that all LTCF residents in that state are vaccinated with their first
dose.

Our goal was to solve the assignment problem for each state by
matching each depot with an LTCF such that:

� The total distance between depot-LTCF pairs was minimized.
� Every LTCF was connected to at most one depot.
� Every depot sent out at most K immunizers on a given day to be
distributed across SNF and ALF clinics.
736
2.4.1. Graph construction
Beginning with graph G on the left in the matching problem

shown in Fig. 1, we constructed a flow network graph G’ on the
right with the aim of assigning LTCs to depots to minimize the total
distance driven subject to the constraints described above as
follows:

Graph nodes: We first added a source node s with supply equal
to

PM
m¼1ltc daysðmÞ and a target node t with demand equal toPM

m¼1ltc daysðmÞ. Note that this symbolizes that the aggregate
demand by LTCFs is satisfied by the aggregate supply from all
the CVS depots. We then added two auxiliary depot nodes for each
depot: one for the work it does for vaccinating ‘SNF’ and another
node for work it does for vaccinating ‘ALF’. For depot node a,
‘SNF’ and ‘ALF’ auxiliary nodes are represented as SNF squad, Depot
a, and ALF squad, Depot a, respectively (Fig. 1). These auxiliary
nodes were added to take into account workload constraints of
each depot and will be explained further in the section describing
construction of the graph edges. Finally, we added one node per
LTCF, and assigned it a demand of ltc_days(m) for LTCFm. This sym-
bolizes the number of days it takes for the inhabitants of LTCFm to
be vaccinated.

Graph edges: We added edges between source node s and depot
nodes with capacity equal to num_days and further added an edge
connecting a depot to each of its auxiliary ‘SNF’ and ‘ALF’ nodes
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with capacity also equal to num_days. This, together with the edge
capacity num_days from source to each depot, takes into account
the constraint that individual or combined workloads from a depot
must not exceed the total workload a depot can manage. We then
added edges between the SNF squad, Depot a node and the LTCF
clinicmwith weight equal to dist(a, m) � ltc_days(m), and between
the ALF squad, Depot a node and the LTCF clinic m with weight
equal to dist(a, m) � ltc_days(m), which denotes the total driving
distance needed for vaccinating LTCF m from depot a.

2.4.2. Solving the minimum-cost flow problem
We varied num_days during our computation to find the mini-

mum number of days within which the LTCFs could be optimally
vaccinated. This accounts for the workload constraint that the
depot can do a work equivalent to at most num_days towards
administering the first dosage to LTCFs assigned to it (within 21
or 28 days depending on the vaccine).

It is well-known in the literature that supply–demand flow
problems as modeled by G’ can be solved optimally in a computa-
tionally efficient manner [10,12,13]. Moreover, when the edge
capacities and weights are integers, as in our case, the flow in
the optimal solution on each edge is guaranteed to be an integer.
This means that solving the supply–demand flow problem on our
graph G’ will not only minimize the total distance driven, but the
flows on the edges from depots to LTCFs will denote the number
of days each LTCF is to be served from the corresponding depot.
A minor point to note is that the optimal solution can hypotheti-
cally assign a LTCF to be served from two depots (e.g., if a LTCF
takes two days to be vaccinated, then it could be served for one
day each from two depots). However, such occurrences were extre-
mely rare; almost all LTCFs were fully assigned to one of the
depots. If by a rare chance the optimal solution assigned a LTCF
to be served from two depots, then we typically modified the solu-
tion to assign that LTCF to the depot corresponding to the majority
of its workload.

2.5. Scheduling LTCFs assigned to a depot

The vaccination schedule of LTCFs assigned to a depot was com-
puted so that the LTCFs were vaccinated as soon as possible, while
respecting the daily workload constraints of a depot. For the pur-
pose of computing LTCFs to be vaccinated on the next available
day, we found it more effective to combine a large LTCF with one
or two small LTCFs near a depot. This had the benefit of making
the workload of a depot fairly distributed across the schedule. To
identify the small LTCFs that could be combined with large LTCFs
for a day’s schedule, we estimated the time taken by a depot to
vaccinate a LTCF (denoted by timed) as the sum of three factors:
(1) time taken to drive and return; (2) time taken to administer
the doses; and (3) extra time (an extra one-half hour was added
for Moderna vaccines and an extra hour for Pfizer vaccines). If
the total number was less than 4 h, then we considered that clinic
‘small.’ At most, two such ‘small’ LTCFs were combined with a large
LTCF on a given day, subject to total workload constraints of a
depot. We also kept track of the number of individuals remaining
to be vaccinated when scheduling large LTCFs that spanned multi-
ple days. If on any day timed fell below 4 h (due to reduced number
of individuals remaining to be vaccinated), then for the last vacci-
nation session it could be treated as a ‘small’ LTCF and could be
combined with another large or small LTCF:

timedðhoursÞ ¼ 2dist eð Þ
20

þ dosesðmÞ
8

þ 1:5 ðif ModernaÞ or 1ðif PfizerÞ þ 0:5
737
To devise a scheduling algorithm for administering the first
dose, we first considered SNF LTCFs, as these were prioritized over
ALF LTCFs according to CDC guidelines. We sorted SNF LTCFs
assigned to a depot in the decreasing order of their ltc_days val-
ues. If there was a SNF LTCF that was partially served on the previ-
ous day, then we prioritized that SNF LTCF on the next available
day. Otherwise, we considered the next largest available SNF LTCF
yet to be served. We computed the number of immunizers needed
to serve the selected SNF LTC. If it was greater than or equal to K,
then we assigned only the single SNF LTCF for that day. We sub-
tracted the number of SNF LTCF inhabitants that were yet to be
vaccinated after that day. A positive number indicated that the
SNF LTCF was going to be partially served that day and would be
prioritized on the next day. If the number of immunizers needed
on that day was less than K, then we selected the larger of the
two smallest SNF LTCFs at which vaccination would take less than
4 h (see previous paragraph) from the pool of unscheduled SNF
LTCFs assigned to the depot.

After scheduling the first dose for SNF LTCFs as described above,
we scheduled the first dose to ALF LTCFs using the same algorithm.
After we scheduled the first dose for all LTCFs, we again used the
above algorithm to schedule the second dose, while taking into
account that for any LTCF the second dose must come 21 days after
the first dose for the Pfizer vaccine and 28 days after the first dose
for the Moderna vaccine.
3. Results

3.1. Distance minimization between matched depot-LTCF pairs

We served 47,907 LTCFs (median number of residents/staff per
facility = 70) across the 50 states, Puerto Rico, and the District of
Columbia by assigning 1,214 retail stores as depots for vaccine dis-
tribution. Our assignment algorithm minimized distances between
matched depot-LTCF pairs such that 41% of the LTCFs were within
5 miles of a depot, 74% were within 20 miles, and only 8% mapped
to depots farther than 50 miles away (Fig. 2). We verified that
LTCFs paired with a depot further than 50 miles away were indeed
mapped to the closest depot compared with all available options.
3.2. Load distribution fairness and schedule packing across depots

Fig. 3 shows load distribution on depots by vaccine type across
ltc_days, i.e., the number of days required to completely vaccinate
all staff and patients in that location given our immunization
capacity. Our algorithm efficiently matched depots to LTCFs such
that the total load of serving all LTCFs assigned to a depot was
fairly distributed across different depots. A majority of depots
served a large number of LTCFs with smaller ltc_days (Fig. 3 left),
whereas only a few depots served outlier LTCFs with larger values
of ltc_days (Fig. 3 right). This fairness in load distribution ensured
that all depots could be operationalized in parallel, thus requiring
the minimum number of days for delivery of the first shot. All
depots finished immunizing LTCFs with the Moderna vaccine by
the 28-day mark, which is when the second shots are due for Mod-
erna, and 90% of the depots finished immunizing LTCFs with the
Pfizer vaccine by the 21-day mark, the minimum timing for the
second dose of that vaccine (Fig. 3).

Across all states, 42% of the LTCFs required only a half day to
vaccinate (Fig. 4). Accordingly, strategic clustering of pairs of LTCFs
with a given depot helped optimize distribution of the vaccines. By
combining several small LTCFs with one large LTCF, the number of
depots involved in vaccinating peaked quickly and declined gradu-
ally over time, thus allowing us to maximize the ability to deliver



Fig. 2. Optimized distance distribution between mapped CVS depot-LTCF pairs. This optimized distribution was obtained by solving for the minimum-cost flow in the
assignment problem.
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as many first vaccine doses as possible within the 21/28 day win-
dow (Fig. 5).

3.3. LTCF vaccination by state

In 76% of all states, the first vaccination dose was distributed
within an average of 9 days after the program started (Fig. 5).
Fig. 3. Distribution of vaccination load across ltc_days by vaccine type. Solving for the sch
types. As a result, 100% of the depots administering the Moderna vaccine finished with
vaccine finished within 21 days (bottom graphic).
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The average distance between depot-LTCF pairs was usually short,
and only occasionally exceeded 40 miles in geographic areas where
depots and LTCFs were more spread out (i.e., Montana, South
Dakota, and Wyoming). California required the longest time
(23 days) to vaccinate 706,000 patients with the first dose, which
highlights the capacity bottlenecks related to the large number of
LTCFs in this populous state.
eduling problem ensured fair distribution in workload across depots for both vaccine
first doses within 28 days (top graphic), and 90% of depots administering the Pfizer



Fig. 4. Single and multiple depot visits per day across all states. Our solution strategically paired LTCFs that could be visited on the same day with a depot for increased
vaccination throughput. Forty-one percent of depots visited more than 2 depots per day across all states (left graphic). This strategic pairing resulted in rapid vaccination of
LTCFs (right graphic).

Fig. 5. Key LTCF vaccination metrics by state in the optimized solution. The average of maximum number of days needed for first vaccination dose across depots by state (left
graphic); average distance between depot-LTCF pairs in miles (center graphic); and the number of vaccinations (first doses) are shown for each state.

S. Shukla, F. Fressin, M. Un et al. Vaccine 40 (2022) 734–741
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3.4. In-depth assessment of LTCF vaccination in California

An examination of California provides further insights into the
challenges faced in that state. California contained more than
15,000 LTCFs serviced by CVS depots (median number of resi-
dents/staff per facility = 41). Our strategy of scheduling more than
one LTCF per day by combining small LTCFs improved the capacity
bottleneck in California. By clustering small LTCFs, we ensured that
57% of depots visited two or more LTCFs in a day (Supplementary
Fig. 3). In addition, our scheduling algorithm fairly distributed load
by scanning LTCFs based on decreasing order of size and pairing
one large LTCF (i.e., an LTCF with more ltc_days) with several small
LTCFs on each day (Supplementary Fig. 4). We observed that the
number of LTCFs covered increased with increasing number of
days, and then decreased before tapering off at around Day 18,
while the number of assisting depots was maintained across the
duration. Most LTCFs had received vaccinations by Day 28; after
Day 28, very few depots (< 32) were engaged in immunizing
patients/staff.
4. Discussion

Due to the significant burden of COVID-19 on vulnerable indi-
viduals living in clusters such as LTCFs, vaccination of LTCF resi-
dents and staff was given the highest priority by the CDC [4].
CVS Health was chosen as one of the retail partners for LTCF vacci-
nation. Using the algorithms described here, the first LTCF vaccina-
tion dose was distributed within the first 9 days after the start date
of the program in 76% of states, and greater than 90% of doses were
administered in the minimum amount of time (28 days for the
Moderna vaccine and 21 days for the Pfizer vaccine).

The substantial risk of adverse outcomes for LTCF residents who
become infected with COVID-19 motivated our work to design
algorithms to vaccinate patients in these severely vulnerable com-
munities quickly and efficiently. Ideally, the assignment and
scheduling sub-problems associated with an effort such as this
would be solved together as a single problem. However, because
of several logistical constraints (related to cold-storage, capacity,
and time spent in traveling to locations), we took a two-step
approach where we obtained an optimal solution for the assign-
ment problem and then proposed an algorithm for the scheduling
problem building on top of optimal assignments. While our solu-
tion to the assignment problem was already optimal given system
constraints, it is possible to design a further optimized scheduling
algorithm. However, additional optimization would occur at the
cost of higher complexity, including reduced ease of execution
and logistical complications. We encountered multiple challenges
during this exercise, including the constraint of creating depot-
LTCF pairs that were closest within the borders of a given state,
rather than closest overall, and the need to evenly distribute load
among CVS depots to allow parallel deployment of the vaccination
squads. In addition, the vaccine needed to be transported to the
target population, rather than having the target population come
to a designated location. These unique characteristics added to
the logistical difficulties of organizing mobile clinics for vaccine
distribution to LTCFs.

Given these challenges, the overall success of efforts by CVS
Health and other federal partners to vaccinate residents and staff
at LTCFs is remarkable: between the first day of nursing home vac-
cinations, December 21, 2020, and January 31, 2021, nursing home
deaths decreased 66% in the US while deaths in non-nursing home
residents (most of whom were not yet vaccinated) increased 61%
[7]. Although vaccine efficacy is clearly a critical component of
mass vaccination, a recent modeling study found that factors
related to implementation and distribution are as or more impor-
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tant for the success of vaccination programs than the efficacy of
the vaccine itself (within a specified range) [14].

To the best of our knowledge, we are the first to share details on
algorithmic implementations for vaccine distribution to clustered
communities via mobile clinics applied to a real-life case study
deployed on a nationwide scale. Mobile clinics are an efficient
means for providing health services to vulnerable communities
during high mortality emergencies [15,16]. However, none of the
existing work in the literature has addressed the vaccine distribu-
tion challenges described here. Previous reports have focused on
designing optimal vaccine allocation network from a distribution
center to local clinics [17,18], but did not include last-mile vaccine
distribution to prioritized patients, the focus of the study reported
here. Another line of work revolves around prioritization of popu-
lations for vaccine distribution [19–21], whereas in our work the
prioritized population (namely, residents in a closely clustered
community such as LTCFs) was pre-determined and the challenge
was to vaccinate them quickly and efficiently. The last stream of
work studies the problem of vaccine distribution under evolving
disease propagations modeled via epidemiological models
[22,23], which is also very different from our problem. These past
works either had idealized assumptions of network models or were
simulations based on real data without a deployed application.
Reports on vaccine distribution for influenza [24] and COVID-19
[25] come closest in scope to our work in terms of designing opti-
mal vaccine distribution algorithms, but do not provide a solution
for the scheduling problem, which we have developed and imple-
mented on a national scale.

Limitations of the study reported here include the inherent
trade-off between real-life implementation and comparison with
other algorithmic approaches on real-world data. Because the algo-
rithm described here was deployed as part of an actual vaccination
distribution program, the results of our case study only reflect out-
comes associated with those specific circumstances. We are there-
fore unable to compare the results of our algorithm with those
obtained by other possible algorithms or solutions. On the other
hand, more sophisticated algorithms allow comparisons with other
algorithmic variations [26,27], but are not deployed in real time
and therefore do not provide actual outcome data that can only
arise from real-world use.

In conclusion, the vaccine distribution system described here
allowed efficient and rapid distribution of vaccines to 47,907 LTCFs
from mobile clinics linked to 1,214 CVS depots. This infrastructure
may be of use in future LTCF vaccination campaigns. We hope our
analysis and insights from the CVS Health LTCF vaccination mobile
clinic program will be of value in implementing vaccine distribu-
tion strategies across the world, as well as in designing additional
healthcare outreach programs that may be well-suited to mobile
clinics.
Declaration of Competing Interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: [The authors are employed by and own stock in CVS
Health, who funded this work.].
Acknowledgements

This work was supported by CVS Health as part of the authors’ rou-
tine work. There was no external funding. We thank Todd A.
Galusha (CVS Health) for data support, Sherry Shen (CVS Health)
for illustrations, Kelly Mok (CVS Health) for co-coordinating the
project across multiple stakeholders, Sadid Hasan (CVS Health)
for comments on improving this manuscript, and Sharon L. Cross



S. Shukla, F. Fressin, M. Un et al. Vaccine 40 (2022) 734–741
(CVS Health) for editorial assistance. All authors attest they meet
the ICMJE criteria for authorship.

Data availability

Data availability is discussed in Section 2.2. Researchers should
contact the corresponding author with any questions or requests.

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.vaccine.2021.12.049.

References

[1] Coronavirus death toll. Worldometer. https://www.worldometers.
info/coronavirus/coronavirus-death-toll/ (accessed December 1, 2021).

[2] Curiskis A, Kelly C, Kissane E, Oehler K. What we know-and what we don’t
know-about the impact of the pandemic on our most vulnerable community.
March 31, 2021. https://covidtracking.com/analysis-updates/what-we-know-
about-the-impact-of-the-pandemic-on-our-most-vulnerable-community
(accessed December 1, 2021).

[3] Harris-Kojetin L, Sengupta M, Lendon JP, et al. Long-term care providers and
services users in the United States, 2015–2016. National Center for Health
Statistics. February 2019. https://www.cdc.gov/nchs/data/series/sr_03/sr03_
43-508.pdf (accessed December 1, 2021).

[4] Dooling K, Marin M, Wallace M, McClung N, Chamberland M, Lee GM, et al. The
Advisory Committee on Immunization Practices’ updated interim
recommendation for allocation of COVID-19 vaccine—United States,
December 2020. MMWR Morb Mortal Wkly Rep 2021;69(5152):1657–60.

[5] Trump administration partners with CVS and Walgreens to provide COVID-19
vaccine to protect vulnerable Americans in long-term care facilities
nationwide. U.S. Department of Defense web site. October 16, 2020. https://
www.defense.gov/News/Releases/Release/Article/2384541/trump-
administration-partners-with-cvs-and-walgreens-to-provide-covid-19-
vaccin/ (accessed December 1, 2021).

[6] Reporting COVID-19 vaccination data for long-term care facilities. Centers for
Disease Control and Prevention web site. April 24, 2021. https://www.
cdc.gov/coronavirus/2019-ncov/vaccines/distributing/long-term-care-facility-
vaccination-data.html (Accessed December 9, 2021).

[7] Chidambaram P, Garfield R, Neuman T, Levitt L. Is the end of the long-term care
crisis within sight? New COVID-19 cases and deaths in long-term care facilities
are dropping. Kaiser Family Foundation web site. February 24, 2021 https://
www.kff.org/policy-watch/is-the-end-of-the-long-term-care-crisis-within-
sight-new-covid-19-cases-and-deaths-in-long-term-care-facilities-are-
dropping/ (accessed December 1, 2021).

[8] Conlen M, Mervosh S, Ivory D. Nursing homes, once hotspots, far outpace U.S.
in Covid declines. The New York Times. Feb. 25, 2021. https://www.
nytimes.com/interactive/2021/02/25/us/nursing-home-covid-vaccine.html
(accessed December 1, 2021).

[9] Simmons-Duffin S. Why does Pfizer’s COVID-19 vaccine need to be kept colder
than Antarctica? National Public Radio. November 17, 2020. https://www.npr.
org/sections/health-shots/2020/11/17/935563377/why-does-pfizers-covid-
19-vaccine-need-to-be-kept-colder-than-antarctica (accessed December 1,
2021).
741
[10] Kleinberg J, Tardos E. Algorithm design. Boston: Pearson/Addison-Wesley;
2006.

[11] CVS pharmacy. Store locator. https://www.cvs.com/store-locator/cvs-
pharmacy-locations (accessed December 1, 2021).

[12] Tomescu AI, Kuosmanen A, Rizzi R, Mäkinen V. A novel min-cost flow method
for estimating transcript expression with RNA-Seq. BMC Bioinf 2013;14(Suppl
5):S15. https://doi.org/10.1186/1471-2105-14-s5-s15.

[13] Hovav S, Tsadikovich D. A network flow model for inventory management and
distribution of influenza vaccines through a healthcare supply chain. Oper Res
Health Care 2015;5:49–62. https://doi.org/10.1016/j.orhc.2015.05.003.

[14] Paltiel AD, Schwartz JL, Zheng A, Walensky RP. Clinical outcomes of a COVID-
19 vaccine: implementation over efficacy. Health Aff (Millwood) 2021;40
(1):42–52. https://doi.org/10.1377/hlthaff.2020.02054.

[15] McGowan CR, Baxter L, Deola C, Gayford M, Marston C, Cummings R, et al.
Mobile clinics in humanitarian emergencies: a systematic review. Confl Health
2020;14(1). https://doi.org/10.1186/s13031-020-0251-8.

[16] Pitt C, Roberts B, Checchi F. Treating childhood pneumonia in hard-to-reach
areas: a model-based comparison of mobile clinics and community-based
care. BMC Health Serv Res 2012;12:9. , https://link.springer.com/article/10.
1186/1472-6963-12-9.

[17] Lim J, Norman BA, Rajgopal J. Redesign of vaccine distribution networks. Int
Trans Oper Res 2022;29(1):200–25. https://doi.org/10.1111/itor.12758.

[18] Yang Y, Rajgopal J. An iterative cyclic algorithm for designing vaccine
distribution networks in low and middle-income countries. International
Joint Conference on Industrial Engineering and Operations Management, July
15-17 2019, Novi Sad, Serbia. https://arxiv.org/ftp/arxiv/papers/1907/1907.
10777.pdf (accessed December 1, 2021).

[19] Buccieri K, Gaetz S. Ethical vaccine distribution planning for pandemic
influenza: prioritizing homeless and hard-to-reach populations. Public
Health Ethics 2013;6(2):185–96. https://doi.org/10.1093/phe/pht005.

[20] Araz OM, Galvani A, Meyers LA. Geographic prioritization of distributing
pandemic influenza vaccines. Health Care Manag Sci 2012;15(3):175–87.
https://doi.org/10.1007/s10729-012-9199-6.

[21] Tuite AR, Fisman DN, Kwong JC, Greer AL, Chêne G. Optimal pandemic
influenza vaccine allocation strategies for the Canadian population. PLoS ONE
2010;5(5):e10520. https://doi.org/10.1371/journal.pone.0010520.

[22] Grauer J, Löwen H, Liebchen B. Strategic spatiotemporal vaccine distribution
increases the survival rate in an infectious disease like Covid-19. Sci Rep
2020;10(1):21594. https://doi.org/10.1038/s41598-020-78447-3.

[23] MacIntyre CR, Costantino V, Trent M. Modelling of COVID-19 vaccination
strategies and herd immunity, in scenarios of limited and full vaccine supply in
NSW, Australia. Vaccine 2021. https://doi.org/10.1016/j.vaccine.2021.04.042.

[24] Rastegar M, Tavana M, Meraj A, Mina H. An inventory-location optimization
model for equitable influenza vaccine distribution in developing countries
during the COVID-19 pandemic. Vaccine 2021;39(3):495–504. https://doi.org/
10.1016/j.vaccine.2020.12.022.

[25] Tavana M, Govindan K, Nasr AK, et al. A mathematical programming approach
for equitable COVID-19 vaccine distribution in developing countries. Ann Oper
Res 2021 Jun 3 [online ahead of print] https://doi.org/10.1007/s10479-021-
04130-z.

[26] Venkataraman N, Poon BH, Siau C. Innovative use of health informatics to
augment contact tracing during the COVID-19 pandemic in an acute hospital. J
Am Med Inform Assoc 2020;27(12):1964–7. https://doi.org/10.1093/jamia/
ocaa184.

[27] Bednarski BP, Singh AD, Jones WM. On collaborative reinforcement learning to
optimize the redistribution of critical medical supplies throughout the COVID-
19 pandemic. J Am Med Inform Assoc 2021;28(4):874–8. https://doi.org/
10.1093/jamia/ocaa324.

https://doi.org/10.1016/j.vaccine.2021.12.049
https://www.worldometers.info/coronavirus/coronavirus-death-toll/
https://www.worldometers.info/coronavirus/coronavirus-death-toll/
https://covidtracking.com/analysis-updates/what-we-know-about-the-impact-of-the-pandemic-on-our-most-vulnerable-community
https://covidtracking.com/analysis-updates/what-we-know-about-the-impact-of-the-pandemic-on-our-most-vulnerable-community
https://www.cdc.gov/nchs/data/series/sr_03/sr03_43-508.pdf
https://www.cdc.gov/nchs/data/series/sr_03/sr03_43-508.pdf
http://refhub.elsevier.com/S0264-410X(21)01657-1/h0020
http://refhub.elsevier.com/S0264-410X(21)01657-1/h0020
http://refhub.elsevier.com/S0264-410X(21)01657-1/h0020
http://refhub.elsevier.com/S0264-410X(21)01657-1/h0020
https://www.defense.gov/News/Releases/Release/Article/2384541/trump-administration-partners-with-cvs-and-walgreens-to-provide-covid-19-vaccin/
https://www.defense.gov/News/Releases/Release/Article/2384541/trump-administration-partners-with-cvs-and-walgreens-to-provide-covid-19-vaccin/
https://www.defense.gov/News/Releases/Release/Article/2384541/trump-administration-partners-with-cvs-and-walgreens-to-provide-covid-19-vaccin/
https://www.defense.gov/News/Releases/Release/Article/2384541/trump-administration-partners-with-cvs-and-walgreens-to-provide-covid-19-vaccin/
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/distributing/long-term-care-facility-vaccination-data.html
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/distributing/long-term-care-facility-vaccination-data.html
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/distributing/long-term-care-facility-vaccination-data.html
https://www.kff.org/policy-watch/is-the-end-of-the-long-term-care-crisis-within-sight-new-covid-19-cases-and-deaths-in-long-term-care-facilities-are-dropping/
https://www.kff.org/policy-watch/is-the-end-of-the-long-term-care-crisis-within-sight-new-covid-19-cases-and-deaths-in-long-term-care-facilities-are-dropping/
https://www.kff.org/policy-watch/is-the-end-of-the-long-term-care-crisis-within-sight-new-covid-19-cases-and-deaths-in-long-term-care-facilities-are-dropping/
https://www.kff.org/policy-watch/is-the-end-of-the-long-term-care-crisis-within-sight-new-covid-19-cases-and-deaths-in-long-term-care-facilities-are-dropping/
https://www.nytimes.com/interactive/2021/02/25/us/nursing-home-covid-vaccine.html
https://www.nytimes.com/interactive/2021/02/25/us/nursing-home-covid-vaccine.html
https://www.npr.org/sections/health-shots/2020/11/17/935563377/why-does-pfizers-covid-19-vaccine-need-to-be-kept-colder-than-antarctica
https://www.npr.org/sections/health-shots/2020/11/17/935563377/why-does-pfizers-covid-19-vaccine-need-to-be-kept-colder-than-antarctica
https://www.npr.org/sections/health-shots/2020/11/17/935563377/why-does-pfizers-covid-19-vaccine-need-to-be-kept-colder-than-antarctica
http://refhub.elsevier.com/S0264-410X(21)01657-1/h0050
http://refhub.elsevier.com/S0264-410X(21)01657-1/h0050
https://www.cvs.com/store-locator/cvs-pharmacy-locations
https://www.cvs.com/store-locator/cvs-pharmacy-locations
https://doi.org/10.1186/1471-2105-14-s5-s15
https://doi.org/10.1016/j.orhc.2015.05.003
https://doi.org/10.1377/hlthaff.2020.02054
https://doi.org/10.1186/s13031-020-0251-8
https://link.springer.com/article/10.1186/1472-6963-12-9
https://link.springer.com/article/10.1186/1472-6963-12-9
https://doi.org/10.1111/itor.12758
https://arxiv.org/ftp/arxiv/papers/1907/1907.10777.pdf
https://arxiv.org/ftp/arxiv/papers/1907/1907.10777.pdf
https://doi.org/10.1093/phe/pht005
https://doi.org/10.1007/s10729-012-9199-6
https://doi.org/10.1371/journal.pone.0010520
https://doi.org/10.1038/s41598-020-78447-3
https://doi.org/10.1016/j.vaccine.2021.04.042
https://doi.org/10.1016/j.vaccine.2020.12.022
https://doi.org/10.1016/j.vaccine.2020.12.022
https://doi.org/10.1007/s10479-021-04130-z
https://doi.org/10.1007/s10479-021-04130-z
https://doi.org/10.1093/jamia/ocaa184
https://doi.org/10.1093/jamia/ocaa184
https://doi.org/10.1093/jamia/ocaa324
https://doi.org/10.1093/jamia/ocaa324

	Optimizing vaccine distribution via mobile clinics: a case study on COVID-19 vaccine distribution to long-term care facilities
	1 Introduction
	2 Methods
	2.1 Problem formulation
	2.2 Data source/availability and statistical programs
	2.3 Staffing and mapping constraints
	2.4 Modeling for the assignment problem (assigning LTCFs to depots)
	2.4.1 Graph construction
	2.4.2 Solving the minimum-cost flow problem

	2.5 Scheduling LTCFs assigned to a depot

	3 Results
	3.1 Distance minimization between matched depot-LTCF pairs
	3.2 Load distribution fairness and schedule packing across depots
	3.3 LTCF vaccination by state
	3.4 In-depth assessment of LTCF vaccination in California

	4 Discussion
	Declaration of Competing Interest
	ack18
	Acknowledgements
	Data availability
	Appendix A Supplementary material
	References


